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LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS

III. SOME SIMPLE PROBLEMS IN CYLINDRICAL
POLAR CO-ORDINATES

By R. S. RIVLIN
British Rubber Producers’ Research Association, Welwyn Garden City

(Communicated by E. K. Rideal, F.R.S.—Received 4 March 1946.—Revised 13 February 1947)

Expressions for the components of strain and the incompressibility condition, for large deforma-
tions, are obtained in a cylindrical polar co-ordinate system. The stress-strain relations, equations
of motion and boundary conditions for an incompressible, neo-Hookean material, in such a co-
ordinate system, are also obtained and specialized to the case of cylindrical symmetry. These results
are applied to the special cases of the simple torsion of a solid cylinder and of a hollow, cylindrical
tube and to their combined simple extension and simple torsion.

In the case of a solid cylinder, it is found that a state of simple torsion can be maintained by
surface tractions applied to the ends of the cylinder only, and these consist of a torsional couple
together with a compressive force. The necessary torsional couple is proportional to the amount of
torsion and the compressive force to the square of the torsion.

In the case of a hollow, cylindrical tube, it is again necessary to exert a torsional couple, pro-
portional to the torsion, and a compressive force, proportional to the square of the torsion, on the
plane ends, but it is also necessary to exert a normal surface traction, acting in a positive radial
direction, on one or other of the curved surfaces of the tube and proportional to the square of the
torsion.

1. INTRODUCTION

In Part I of this series (Rivlin 1948) the concept of an incompressible, neo-Hookean material
was introduced. Such a material is considered to be isotropic in its undeformed state and
to be capable of large, elastic deformation. Also, its stress-strain relationships are defined
and it is considered that these form the best possible basis for the development of a mathe-
matical theory of the large, elastic deformation of an incompressible material, isotropic in
the undeformed state. In this previous paper, the mathematical theory was developed with
reference to a fixed, rectangular Cartesian co-ordinate system. In the present paper the
principal results obtained there are expressed with reference to a cylindrical polar co-
ordinate system (r,0,z). The method used is essentially that of moving axes. The simpli-
fication of the theory, when the deformation possesses cylindrical symmetry about the
z-axis, is considered and the results obtained are applied to calculate the forces necessary to
produce a large simple torsion and combined extension and torsion in a solid, right-circular
cylinder and in a hollow, cylindrical tube of incompressible, neo-Hookean material. The
results obtained are qualitatively different from those obtained from the classical, mathe-
matical theory for the simple torsion of Hookean cylinders and tubes, but reduce to these
for the case of vanishingly small torsions and extensions.
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510 R. S. RIVLIN ON LARGE ELASTIC
PART A. CYLINDRICAL POLAR CO-ORDINATES

2. COMPONENTS OF STRAIN

In a fixed, rectangular Cartesian co-ordinate system (x”,%",z"), the components of strain
(647xs €4y 627275 €773 €03 €4) , At @ point of a deformed body which was at (x”,y",z") in
the undeformed state, are defined by the relation

(05)? = (1+26,.) (06")?+ (1+2¢,.,) (39")?
+(142¢,.+) (02")2+2¢,»0y" 02" + 26, 02" 0%" 426, 0" By",  (2°1)

where J5’ is the length of a linear element in the deformed state. This element has com-
ponents of length x”, dy” and dz”, in the undeformed state, parallel to the axes x”, y” and z”
respectively, and is situated at (x”,y", z") in that state.
Ifu”, v" and w” are the components, parallel to the axes x”, y” and z”, of the displacement
undergone by the point in the deformation, then
1+ 2€x"x” = (1 +u;,”)2 + (UZ")z + (w:") 23 3
1+ 26,0, = ()2 +(1405) 2+ (W)
L 26, = (W) + (022 (14022
€yrpr = Uty + (1 4-030) Vo +wiyy (1 +w),
6 = U (L ttg) H 05 v+ (1 wl) wli
and €y = (14up) w0 (1403) +wiow),.. )
The position of any point in the undeformed state may be defined by the cylindrical polar
co-ordinates (r, §, z). The cylindrical polar co-ordinate system to which the point is referred
is considered to be fixed. Corresponding to each point (r,,z), we can choose a system of
rectangular, Cartesian co-ordinates (%', ', z'), given by the lines of intersection of the tangent
planes to the surfaces r = const., § = const. and z = const., which pass through the point,
taken in pairs. The a'-axis is the line of intersection of the tangent planes to the surfaces
§ = const. and z = const. and so on. If such a co-ordinate system is chosen at each point,
then the displacement of any point in a deformation may be expressed by its components
u, v and w parallel to the axes x’, ' and z’ of the co-ordinate system whose origin is at the point.
Now, let us choose a fixed, rectangular Cartesian co-ordinate system (x”, y”, z") to coincide
with the system (x',%’,z), which has its origin at (r,6,z) and let (4”,0",w") be the com-
ponents of the displacement of any point in this co-ordinate system.
If two neighbouring points are considered, at (r,0,z) and (r+dr,0+00,z+4dz) in the
cylindrical polar co-ordinate system, in the undeformed state, their co-ordinates in the
system (x”,y",z") are (0,0, 0) and (dx”, dy”, 0z") respectively, where

(2-2)

0x" = (r--0r) cos 60 —r,

8y" = (r—+0dr) sin 66 (2-3)
and 0z" = dz.
Since 84 is infinitesimally small,
cosdfd =1 and sindd = 0. (2-4)

Thus (2-3) becomes 0x" =0dr, 8y" =rdf and 0z" = oz (2-5)
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DEFORMATIONS OF ISOTROPIC MATERIALS. III 511

In the deformation, the point (r,,0,, z,) undergoes a displacement (x,,v,,w,) in the co-
ordinate system (x’, y’, z’) whose origin is at (r,, #,, z,). Letits displacement in the co-ordinate

" ”

system (x",y",z"), whose origin is at (r, 0, z), be (u],v],w}).

Then, u = u, cos (0, —0) —v,sin (6, —0),
v] = u, sin (6, —0) +v, cos (6, —0) (2-6)
and w] = w,.
Whence,

duy = duy cos (0, —0) —dv sin (0, —0) —u, sin (6, —0) 86, —v, cos (0, —0) 60,
0v{ = du, sin (6, —0) +dv, cos (6, —8) +u, cos (6, —0) 00, —v, sin (6, —0) 46, (27)
and  dw] = dw,.

" ”n

In the limit as #, @ and r, —r, the displacement (4], v}, w]) becomes («",v",w"), the dis-
placement of the point (, 8, z) parallel to the axes of the co-ordinate system (x”,y", z"), and
the displacement («,, v,, w,) becomes (,v,w), the displacement of the point (r, 8, z) parallel
to the axes of the co-ordinate system (x',y’, z’) whose origin is at (r, d, z). Thus, letting 6, >0

in (2-7), we obtain S’ — Su—vS0
00" = dv+udl (2-8)
and ow” = dw.

From (2-5) and (2-8), we obtain
W W 1o W
ax"  dr’ 9y rdd r’ 9z" 92’
W _d W 1w W
dx"  dr’ dy"  rdld "r’ 9z 0z’
L U VA U Vi
ox"  dr’ dy" rdod 0z" 0z’
Itis noted from (2-5) thatif x” is constant, or = 0, if y” is constant, 8¢ = 0 and if z” is constant,
dz = 0. :
Introducing these relations, together with (2+5) and (2-2), into (2:1), we obtain
(957)% = (142¢,,) (0r) 2+ (1 +2¢4p) (r00)+ (1+2e,,) (32)?

+ 2¢,,700 8z + 2¢,,02 0r + 2¢,40rr 80, (2-10)

~

(29)

where 1426, = (1+u,)*+0}+w?,
1 u 1 \?2 1
1‘]"2300=ﬁ(u0—v)2+(l+;+;vﬁ) +ﬁwg’
1426, = u2+v2+ (1 +w,)?,
]_ 1 1 \ 2'11
b0 = 3 (=) et (14T ot Ja1 ) S

€ = z(l +ur) +v,0,+ (1 +wz) w,

1 1 1
and €9 = (1 —!—u,);(u(,—v) —f—v,(l +—l:;+—r—ve)+w,;w0.
63-2
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512 R. S. RIVLIN ON LARGE ELASTIC

€,75 €095 €225 €ozs €5 and €, are defined as the components of strain, at the point which is at
(r,0,z) in the undeformed state, in the cylindrical polar co-ordinate system (7,0, z). It is
readily seen that these components of strain are defined from (2-10) in a manner analogous
to that in which the components of strain (2-2) are defined from (2-1).

3. THE INCOMPRESSIBILITY GONDITION

Using the notation of §2, the incompressibility condition is given, in the co-ordinate
system (x”,y",2"), by

n ” "
1+u, Uy U
T = ’I)Z» 1 —I—vZ” vg,, = 1.
Wy wy  1+w,

Making use of the relations (2-9), this becomes

1
1+ur ;(uﬁ;v) u,

u 1
T = v, l-l—;—}—;ve v, =1. (3-1)
1
w, +We 14w,

4. THE STRESS-STRAIN RELATIONSHIPS
In the co-ordinate system (x”,",2z"), the stress-strain relationships for an incompressible,
neo-Hookean material are given (Rivlin 1948, I, § 3) by
tx"x” = %E[(l + u;‘,”)z + u:;g + ug,?] +p)
by = BEDZ (1 0)2 402 4,
trr = $E[WF T wE + (1 +w3)*] +p,
tpr = $E[p w4+ (1+v)) w40 (14+wl)],
-t = SE[WL(14uy) +wlun+ (14wl ul]
and k tx"y” = %E[(l + u;,") v:/c,” -+ u;”(l —I—’l);;») + ug"v;"’]s
at the point which, in the undeformed state of the material, lies at (x”,%",z"). Eis a physical
constant characterizing the material.
Choosing the co-ordinate system (x”,y”,z”) with its origin at the point (r,6,z) in the
cylindrical polar co-ordinate system and with its axes directed along the intersections of

the tangent planes to r = const., § = const. and z = const., as before, we have, employing
the relations (2-9),
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DEFORMATIONS OF ISOTROPIC MATERIALS. III 513

B 1
[ (1074 5 (o —0)2 4|+,

by = %Ehvf—{—(l +%+;v,,) +v§] +5,

-, 1
tz”z” = %E wi—i—ﬁw%"{_(l—i—wz)z:l—{—p)
B 1 1 > (4:'1)
b = B[ 0+ (L34S o) S0 (1w,) |

1 .
tz”x” = %El:wr(l +ur) +;§w0(u0—v) + (l +wz) uz:l

1 1
and by = %E[(l +u,) vt (ug—v) (1 +;+—T;vo)+uzvz:|.

In the deformation, the point whose cylindrical polar co-ordinates in the undeformed
state are (r, §, z) moves to a point whose cylindrical polar co-ordinates are (r+s,0+¢, z+w).
Let ¢,,, 4y, ¢,,, ... be the components of stress in a rectangular, Cartesian co-ordinate system
whose origin is at (r+s,0+¢, z+w) and whose axes are directed along the intersections of
the tangent planes to the surfaces r = const., § = const. and z = const., which pass through
this point, taken in pairs.

Then, by = tppCOS2 P+t sin® 424, .5in P cOS P,
top = Ly SiN®P+-1,. v COS% — 21,0 .5iN @ COS P,
tzz = tz"z"a ( 49
to, = by COSP—1t v -Sin @, )
Ly =tpysing+t..cosd
and to = (byry—tyy) SIng cos g +1,.,-(cos? g —sin? @).
Since, in the deformation, the point (7, 4, z) moves to (r+s,0+¢, z+w),
u=(r+s)cos¢—r and v= (r+s)sing. (4-3)
Substituting from (4-1) and (4-3) in (4-2), we have
1
by = 3E[ (1+5)"+555+52| +2,
1
tag = YE(r+9)?| #2455 (1+0)+ 42 42,
b = VB[ w3+ uh+ (L+0,)7 ]+,
» (4-4)

e = JE(+9) [ 0, + 0o (L+do) + (L+w.) 4.,

1
by = HE[ w,(145) 4008+ (1+0,) s, |

and bo = JE(+9)[ (1+5) 6,+7380(1+ ) 5.6 .
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514 R. S. RIVLIN ON LARGE ELASTIC

5. THE EQUATIONS OF MOTION

The equations of motion, in the co-ordinate system (x”,y",z"), at the point (r, 0, z) in the
cylindrical polar co-ordinate system, take the form (Rivlin 1943, I, § 20)

0" oy ypoan, 0T Op 0T 3p  dT dp
pW‘“ﬂX +§EV 'I_a " axll+au// 0y +3u” 02”’
" o, 2" 01 dp , 9t dp It dp _
p'é;—z— —-pY +‘3‘EV +a 7" a ”+0U” ay +avll azll (5 1)
2w, 2" 07 dp , 9t dp It dp
and R L T PR O T i e

X", Y" and Z" are the components, in the directions of the axes x”, y” and z” respectively,
of the body forces, per unit mass, acting on the material at the point (7,0, z). p is the density
of the material.

If R, O, Z are the components of the body forces, per unit mass, parallel to the axes
(x',y’,2’) of the rectangular, Cartesian co-ordinate system whose origin is at (r, 6, z), then

R=X', ©=Y" and Z=2" (5-2)

for these axes (x',y’,z') and the axes (x”,y",z") are coincident at the point (, 6, z).
Using the relations (2-5), we have

dp dp dp 1dp dp _ap .
o "o a0 ™ ooz (53)

Also, for the point (r, 0, z)

” 14

u=u", v=0v" and w=uw",

2" 0% 0" 0w Pw”  w
= nd

= o7 e ™ e (54)

so that
d7/0uly, 97/du;)., etc., can be expressed in terms of #,, v,, etc., by means of the relations (2+9).
Thus, for example, from (3-1) and (2-9),

" V4
or 14v, [

%—Z a wZ,, l—l—wgﬂ
u 1
1+;+-r—v,, v,
= . . (5+5)
—;wg 1+wz

Now, in the fixed, rectangular Cartesian co-ordinate system (x”,%",2z"), the operator V2
is given by 22
2 .
\% ax//2+ay//2+az//2

In the cylindrical polar co-ordinate system, it is given by

2 19 19 02

Vi=ort, o et (5-6)
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DEFORMATIONS OF ISOTROPIC MATERIALS. IIT 515
du"  du  du" Odu du"  du
o "o 90 a0 " 9z oz
" dv N W v
o o 0w 9z oz
W _w e w_ow
v or — dr’ 90 96’ Iz 9z
From the first of equations (2-7 ), we have
0%u] = 8%u, cos (6, —0) — 0%, sin (6, —0) — 0u, sin (6, —0) 86,

—dv, cos (0, —0) 86, —du, sin (6, —0) 66, — v, cos (6, —8) 66,

—u, cos (0, —0) (86,)%+4wv,sin (6,—0) (09,)>.
In the limit as 6, -0, this yields

0%u" = 8%u— 28v 80 —u(90)2.

Similarly, %" and 0?w” can be obtained from the remaining two equations of (2:7). We then

have  sour — 5% — 95080 —u(30)2, 82" = SP0+20u89—v(30)* and S’ — Suw.

Now, from (2-8),

(5:7)

2" w0 0% dv " 0%
Whence, E =57 5T =g 23 = 3

0" % %" W _du LT L)

T 9T %0 92 T oz (5:8)
and I

a2 ar2> 907 902> 922 9z

Making use of the relationships (5-6), (5-7 ) and (5-8), we have

2 u
Vzu”_ur,—l— u, —l— 5 Ugp— rzvo—ﬁ—i—uzz,
, 1
V" =, 0 + v00+ 5 Ug— 72+sz (59)
and . V" = w,,+;w,+ﬁwgg+wzz.

Introducing the results (5-2), (5-3), (5-4), (5+5) and (59) into equations (5-1), the equa-
tions of motion become, in cylindrical polar co-ordinates,

o= [ (1422 0) (1+0) —%wovz]%i’ﬂvzwr (1))

+l}w,,v, (l—i- + ) 6[)

10[1 '

iz’
p= R~ (t—0) (1) | L4 [(1+) (1+wz>—uzw,]%§§

ap

¢ (5-10)
—l—l: (ug—v)w ~—w0(1—l—u) s

and Y =l}(ua*v) vz_(1+;+;vg) :I!? +[uv,—(1+u,) z] lﬁp

+ (l+ur) l+-+“00 -_l'vr(uﬂ_v) ?'IZ)
roor r 0z’
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516 R. S. RIVLIN ON LARGE ELASTIC
0% 1 1 2 )
where a= ,0a—;;—-,oR——%E(u,r+;u,+ﬁu(,g——r—?—%+uzz),
ik 1 1 2
ﬂ:pa}g—p@—%E(vrr+;vr+;§vﬂﬂ+—:;Q~;iz+”zz) ( (5.]‘1)
0% 1 1
and 7= p‘a—tlzi)‘“pz“%E(wrr+;wr+ﬁw00+wzz)'

6. THE BOUNDARY CONDITIONS

In the rectangular, Cartesian co-ordinate system (x”,%",z"), the boundary conditions
take the form (Rivlin 1948, I, § 20)

1E[(14-uy) cos (x",v) +u,.cos (y",v) +uj.cos (z",v)] — X,
or ” ar ” or ”

— _p[mcos (x",v) +9}7;.,COS (y",v) +(7zZ~COS (z", V)],
$E[vy cos (x",v) + (1+v],) cos (y",v) +v}-cos (z",v)] — ¥,
(6:1)

07’ " aT ” aT ”
= —p[@cos (x",v) +%,y7” cos (y",v) +<7”Z"COS (z", v)]

and 3E[wy, cos (x”,v) +wycos (y",v) 4 (1 +w}) cos (2",v)| - Z;

= p[a%)% cos (x",v) —{—5%” cos (y",v) +0iwz;: cos (2", v)] g
- v is the direction of the normal to the surface in the undeformed state of the body at the
point considered.
(x", v) is the angle between the direction of #” and v. (y”, v) and (z”, v) are similarly
defined.
X, Y, and Z are the components parallel to x”, y” and z” respectively, of the surface force,
per unit area of the surface measured in the undeformed state. At the point (7,4, z),

(xlla V) = (7‘, V): : (y”! V) = (05 V) and (Z”: V) = (Z: V): (6'2)

where (r,v), (0,v) and (z,v) are the angles between v and the directions of the axes %', 3’
and 2z’ respectively, which pass through (r,6, z).
Also, since at the point (7,8, z) the axes (x",y",2z") and (+',y’, 2") coincide,

R =X/, 6,=Y and Z =2, (6-3)

where R,, 0, and Z, are the components of the surface force per unit area parallel to ', y’
and z’ respectively.

Introducing into (6-1) the relations (2-9), (6-2), (6:3) and such relations as (5'5), the
boundary conditions become, in the cylindrical co-ordinate system,
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%EI:(I +u,) cos (r,v) —1—% (uy—v) cos (0,v) +u,cos (z, v):] —R, ]

- -—p[{(l +%+~i~vé) (1+w,) ;%wevz} cos (7,v)
+{o,,—0,(14w,)} cos (6,)
, -;-:%wov,——w,(l +%+%v0)} cos (z, V):] R

%E[v, cos (r,v) + (1 —I——Z;—I-—i-ve) cos (0,v) +v,cos (z, V)] -0,

— —| [Fwpn.— -0 1 +wz)}'cos»(r, v) ;

—[—{(1 +ur> (1 +wz) *uz:wr cos (03 V)
5 =) =014 o5 (2,7) |
%E[w, cos (7,v) —i—%we cos (0,v) + (14w,) cos (z, v)] —Z,

- *p[{% (ug—v) vz—~(1 +¥—E%vé) uz} cos (r,v)
+{u,v,— (14u,) v,}cos (6,v)

) (145 ) = o) v eos (20) ]|

cos(r,y) =1 and cos(#,v) = cos(z,v) = 0.

The boundary conditions (6-4) then become, over this surface,

-

1
BE(L+) =R, = ] (154 00) (L) =g, ],

-

1 1 A
$E0,— 0, = —p| Sy~ (1y—) (1+1,) ]

) , w1 )
1Ew,—Z,= —p[; (ug—0) vz—(l —!—%—!—;ve) uz].

Again, if part of the surface consists of a plane normal to the z-axis,

cos (r,v) =cos (0,v) =0 and cos(z,v) = 1.

Over this plane, the boundary conditions (6-4) become

1 u 1
%;Euz—"Rv = —p_;wﬁvr_wr(l +;+;v¢9)]3

%Evz——@v :“p %(uﬁ_v) wr_%wﬁ(l—}—ur):l [

:(1 +u,) (1 +g+‘}jvg) ——% (ug—v) vr] .

A,

517

(6-4)

If part of the surface of the body, whose deformation is considered, has, in the undeformed
state, the form of a cylinder with the z-axis as axis,

(6:5)

(6-6)

64
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518 , R. S. RIVLIN ON LARGE ELASTIC

7. DEFORMATION POSSESSING CYLINDRICAL SYMMETRY

If the deformation possesses cylindrical symmetry about the z-axis, then u, v, w and p
are independent of §; i.e.

u0 = 1)0 = W0 = 0 and ap/aﬂ = 0.

Introducing this into (3-1), the incompressibility condition becomes

14u,  —uv/r u,
T=| v, 1+(ulr) v, |=1 (7-1)
w, 0 1+w,

The equations of motion (5-10) become

=<1—|—E)(l+wz)g—lr)~w (1+ )Z‘z
ﬂ=;(1+ )%[; vwr% (7-2)
and yz[——gvz—(1+—1;)u +[1+u,)(1+ )+” g‘i
where pg; —pR— éE( —f—i u, %Jruzz),
B = b5 —pO—4B(v, 10, to,) (73)
and y = paat2 —pZ— E(w,,+;w,+wzz).

The boundary conditions (6-4) become
%E[(l +u,) cos (r,v) — gcos (0,v) 4u,cos (z, v)] —R,

= —])[(1 —i—l—;) (14w,) cos (r,v) +{v,w,—v,(1 +w,)} cos (6,v) —w,(l —{—z—;) cos (z, V):l ,
%El:v, cos (r,v) + (1 —I—%) cos (6,v) +v,cos (z, V)] -0,

:-_p[; (1+w,) cos (r,v) +{(1+u,) (14+w,) —u,w,}cos (0,v) — —w cos (z,v)] (

and
L1E[w, cos (r,v) + (1 4+w,) cos (z,v)] —Z,

_~__pl:{—gvz—(l-{—l—;)uz}cos(r,v)—i—{uzv, (1+u,) v} cos (,v)

) (145) 420 cos (2,0
(-4
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If, further, a part of the surface of the body is cylindrical in the undeformed state and has
its generators parallel to the z-axis, then, for this surface, equations (7-4) become

BE(L+u) B, = —p(1+%) (1+w)),
YEv,—0,——p° (14w,) » (7:5)
and %Ew,—-Z,,=—~p[—gvz—(1+%)uz:l.

Again, if part of the surface is plane in the undeformed state and normal to the z-axis,
the boundary conditions for this surface become

3Eu,—R, = *P_'fwr(le%)]’ ‘
1o, — 6, =4 2w, ] » (7-6)
and %E(l_l_wz)wzv:“lb (l+ur) (1+Z—:.)+§vr]'

PART B. SOLUTIONS OF SOME SIMPLE PROBLEMS

8. THE TORSION OF A RIGHT-CIRCULAR CYLINDER

As an example of the application of the formulae deduced in the foregoing pages, the
problem of the torsion of a right-circular solid cylinder of incompressible, neo-Hookean
material, by forces applied to its plane ends, will be considered. Let us assume that in its
undeformed state, i.e. under the action of no external forces, the cylinder has a length / and
radius @. We choose our cylindrical polar reference system (r,6,z) in such a way that its
z-axis coincides with the axis of the cylinder and its origin is at the centre of one of the ends
of the cylinder. The curved surface of the cylinder is then part of the surface r = a and the
plane ends form parts of the surfaces z =/ and z = 0.

Now, consider the torsional deformation of the cylinder, in which planes normal to the
z-axis remain plane and suffer only a pure rotation about the z-axis through an angle ¢
proportional to their distance from z = 0, i.e. ‘

¢ = Iﬁz) (8'1)
where ¥ is a constant. It is noted that the body will then remain cylindrical in form.

It can readily be shown that such a deformation can be supported by surface tractions

applied to the ends of the cylinder only.
In the deformation, the displacement (u,v,w), defined as in §2, of a point which is at
(r,0,2) in the undeformed state, can readily be seen to be given by '

u =—r(l—cosg) = —r(l—cos ¥z),
v=rsing = rsinyz (8-2)

and w =0,
64-2
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520 R. S. RIVLIN ON LARGE ELASTIC

Since the deformation is cylindrically symmetrical about the z-axis, the incompressibility
condition is given by (7-1). Introducing into the expression for 7 the values of 4, v and w
given by (8-2),

cosyz —sinyz —yrsinyz
T=|sinyz cosyz yrcosyz
0 0 1

= cos2Yz+sin? Yz = 1.

So, the incompressibility condition is automatically satisfied by a deformation given by (8-2).

Introducing (8-2) into equations (7-2) and (7-3), and restricting the argument to the
case of equilibrium, where §%4/df? = 0%/9t> = ¢?w/d¢? = 0, it is seen that the equations of
motion for this case become

052%005%2, ﬂ:%ﬁsing&z and 7:%, (8-3)
where a = —pR+LEy?r cos Yz,
f=—pO+L1Ey?rsin Yz (8-4)
and Yy =—pZ.

Ifwe make Z = 0, then dp/dz = 0 (from the last of equations (8-3) and the last of equations
(8:4)), i.e. p is a function of r only. The first two of equations (8-4) are then simultaneously
satisfied if R = O = 0.

Thus, if the body forces R, ©, Z are zero throughout the volume of the material, the
equations of motion are satisfied, provided p is a function of 7 only. The form of p, as a function
of 7, can be found from the first two of equations (8-4). These become, putting R = 0 = 0,

LEY%r = dp/or.
This yields p = LEY*r? 4 const. (8'5)

The boundary conditions (7-5) over the curved surface of the cylinder become

tEcosyyz—R, = —pcosyz,
1Esinyz— 0, = —psinyz (8-6)
and —Z,=0.
If the surface tractions on this cylindrical boundary are zero, i.e. R, = 0, = Z, = 0, these
three conditions can be simultaneously satisfied if p = — LE.
Introducing this value of p on the cylindrical boundary r = « into equation (8-5), we find
that the constant there has the value (—1E—1Ey24?).
Thus p =—LEy?(a®—1?) —LE. (87)
The boundary conditions (7-6) over the plane end z = { of the cylinder become
—1Eyrsinyl—R, = 0,
- YEYrcosyl—0,=0 (8-8)
and E—Z,=—p.
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Thus, introducing the expression for p given in (8-7), we have

R, = —1Eyrsin i,
0, =1Eyrcosyl (8-9)
and Z, = —3Ey*(a®—1?).

It should be borne in mind that the surface tractions R,, ©, and Z, at a point of the surface
are defined as being in the radial, azimuthal and axial directions respectively, at that point,
in the undeformed state of the material. It is of advantage for the practical interpretation
of the results to replace R,, @, and Z, by the components R;, @, and Z;, parallel to the radial,
azimuthal and axial directions respectively, at the corresponding point of the deformed body.

Now, the axial directions are not altered by the deformation and the displacement of
each point lies in a plane at right angles to this axial direction. Therefore

Z, =27, (8-10)

Since the plane end of the cylinder considered turns through an angle ¢/ in the deforma-

tion, R, =R cosyl+0,sinyl and @, — 6,cosyi—R,sinyl. (811)
Substituting in (8-10) and (8-11) from (8-9), we obtain

R,=0, O0,=1Eyr and Z,=-—LEy?*(a®—1r?). (8-12)

‘Thus the deformation described by equations (8-2) can be supported by the following
set of surface tractions applied to the plane end of the cylinder:

(i) an azimuthal tangential traction increasing linearly from zero at the centre to 1Eya
at the periphery; and

(ii) a normal compressive traction increasing from zero at the periphery to §Ey2%a? at
the centre.

These tractions are of course measured per unit area of the surface to which they are
applied measured in the deformed state. However, in the deformation we are considering
the area of an element of the end surface of the cylinder does not change.

The azimuthal forces have the nature of a couple. The total moment of this couple which
must be applied to produce a torsion ¥ is

far@,', 2mrdr = f “%EW 2nrdr
0 0

=inEyat. (8-13)

We note that it is proportional to the torsion produced.
The total compressive force which is exerted is

f ‘ —Z, 2nrdr = f J%E¢2(a2 —12) 2mrdr
0 0

= i Ey%at. (8-14)

We note that this force is proportional to the square of the torsion produced and therefore
is negligibly small for very small torsions. Thus, vanishingly small torsions can be produced
by a torsional couple proportional to the torsion, in accordance with the results of the

classical theory of the torsion of a cylinder of incompressible, Hookean material.
64-3
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522 R. S. RIVLIN ON LARGE ELASTIC
If ¢, is the angle, in radians, through which one end of the cylinder is turned relative to
the other, ¢, = Y.

Introducing this relation into the results (8-13) and (8-14), we see that the total couple which

must be applied has moment é
=%—77E71a4 (8:15)

2
and the total compressive force = T%WE(?ZI) at, (8-16)

The stress at any point of the deformed cylinder can be obtained from equations (4-4)
by putting 5=0, g=¢z and w=0.

Also, since the value of p throughout the cylinder is given by (8:7), this expression can also
be introduced into equations (4-4).
We obtain
by = —§EY2(a?—12), tyy = JEYR—4EYH @ —1?), i, =—§EY*(a*—1), )
by, = 3EYr, t,=0 and ¢,=0. J

The stress system is seen to be equivalent to a shearing stress #;, (= 1Eyr) together with
a normal stress ¢y, (= $Ey??), acting azimuthally, and a superposed negative hydrostatic
pressure of amount —1Ey2(a%—r?).

The forces which must be applied to the ends of the cylinder to produce the simple torsion,
given by (8-1) or (8-2), have been calculated in detail as regards their distribution over these
ends. However, we can invoke Saint Venant’s Principle to generalize this result in the case
of a right-circular cylinder whose diameter is small compared with its length. Thus, provided
the external forces are applied over, or close to, the ends of the cylinder and the total tor-
sional couple and compressive force are given by (8-13) and (8:14) respectively, the torsion
produced in the cylinder, at distances from the ends large compared with the diameter of
the cylinder, will be given by (8-1) or (8:2). It must be borne in mind, however, that it has
only been proved that this torsion represents a possible equilibrium state under the deduced
system of forces and in view of the non-linearity of the equations of motion and boundary
conditions for an incompressible, neo-Hookean material and the results obtained
in Part II of this series, the possibility of alternative equilibrium states should
be borne in mind. Analogous remarks will apply to the examples discussed
in §§ 9 and 10 of this paper, but will not be repeated there.

It has already been pointed out (Rivlin 1948, I, §11) that vulcanized
rubbers behave approximately as incompressible, neo-Hookean materials.
The system of forces (8:12) could be applied to a rubber cylinder by bonding
on to its plane ends two metal plates and rotating these relative to each other
through an angle ¢/, while restraining their motion so that they remain
parallel and a distance / apart. To do this the torsional couple (8-13) and
compressive force (8-14) will have to be applied to the cylinder. If the compressive force is
not applied and we consider for the moment that the metal plates are flexible, the rubber
cylinder will tend to take up a form such as that shown in axial section by the full line in
figure 1. The dotted line in the figure represents an axial section of the cylinder before
deformation. The volumes before and after deformation must be equal.

(8-17)

| ettty |
LS S |

Ficure 1
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9. SIMULTANEOUS EXTENSION AND TORSION OF A RIGHT-CIRCULAR CYLINDER
In this section, we shall investigate the forces necessary to produce a combined uniform
extension and torsion of a right-circular cylinder. Let us assume, asin § 8, that planes normal
to the z-axis remain plane and suffer a translation w parallel to the z-axis, given by
w=(1-1)z, (9-1)
where A is a constant.
Suppose now that the cylinder is subjected to a uniform torsion, i.e. planes normal to the
z-axis are rotated in their own plane through an angle ¢ given by

¢ = Yaz. (9-2)
As a result of the deformation described by (9-1), the cylinder undergoes a radial con-
traction s, which, since the material is incompressible, is given by

r’z = (r+s)2Az;

i.e. r+s=r/[/A
The displacements », v, w in the axial system ', y’, z’ (defined as in § 2) are now given by

1 ro.
u=—r(l—ﬁcos¢/lz), v=ﬁsm¢/lz and w= (1-1)z. (9-3)

It can readily be seen that the incompressibility condition (7-1) is satisfied for the
displacement (9-3), by direct substitution.

We now proceed to find the system of body and surface forces which is necessary to produce
the deformation (9-3), as in § 8.

The equations of motion (7-2) become

B W L e 0P _Lop .
a~JAcos¢AzW, ﬂ—J131n¢rAzE and Y=z (9-4)

where o = —pR-+1EY2A¥rcosydz, f=—pO+LEY2Arsinydz and y = —pZ.

Asin § 8, we see that the equations of motion (9-4) can be simultaneously satisfied by taking
dp/0z = 0 and R = @ = Z = 0, i.e. no body forces are acting, provided that

dp[or = LEY2r;
i.e. p = +EY?Ar? + const. (9-5)
The boundary conditions (7-5) over the cylindrical portion of the surface yield
R,=0,=2Z,=0

over this surface, taking p = — 1E/A on the surface.
Introducing p = — }E/A, when r = q, into (9-5), we have
p=—EPA@ 1)~ 57 (9-6)

The boundary conditions (7-6) for the plane end of the cylinder, which in the undeformed
state forms part of z = /, become

R = —1EyXrsinydl, O,=1EylrcosyAl and Z, = %Eug. (9-7)
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Introducing the value of p given in (9-6), and employing relations (8-11), in which ¢/ is
replaced by yA/, we obtain

R,=0, ©,—3Eflir and Z =%E(A_%)—%E¢2(az_r2). (9-8)

It is thus seen that the combined simple extension and torsion of the cylinder can be
produced by the combination of a couple and normal force applied to the ends of the
cylinder.

10. TORSION OF A HOLLOW CYLINDRICAL TUBE

We shall now consider the torsion of a hollow, cylindrical tube of length / and internal
and external radii 4 and « respectively, in the undeformed state. The axis of the tube is
considered to coincide with the z-axis. Suppose this tube is subjected to a simple torsion
defined as in § 8 by

¢ =yz.

Then, as before, u, » and w are given by equations (8-2). The incompressibility condition
is automatically satisfied and the equations of motion (8:3) are satisfied for zero body
forces,i.e. R=0 =Z =0, if

P _ W _ 1zye
5, =0 and 79;—3Eyfr,

i.e. b = EY*r?4-const. (10-1)
The boundary conditions (7-5) over the curved surface 7 = & become
$Ecosyz+R, = —p,cosyz,
tEsinyz+0, = —p,sin Yz (10-2)
and Z, =0,

where p, is the value of p on r = b.
The boundary conditions (7-5) over the curved surface 7 = a become
tEcosyz—R, = —p,cosyz,
: tEsin yz—0, = —p,sin Yz (10-3)
and Z,=0,

where p, is the value of p on r = a.
We shall now consider two separate cases.

Case 1. p,=—%E.
Then, from (10-3), R, = 6, = Z, = 0, over the surface r = a and, from (10-1),

p=—ABp (1) —}E. (104
Then, by, = —%EY?(a®—b?) — LE.
Substituting this value in (10-2), we have

R, = §EY*(a®>—b%) cosyz, O,=tEY?(a®—b?)sinyz and Z,=0. (10-5)
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Now, with the notation of § 8, we have
R, = 1Ey?(a®—b?), ©,=0 and Z =0, (10-6)

over the surface r = 4.
It can readily be seen, as in § 8, that the surface tractions acting on the plane ends of the
cylindrical shell are again given by (8:12).

Case 2. p,=—3%E.
In this case, we see, from (10-2), that R, =0, = Z, = 0 over the surface r = 5. Also,

from (10-1), p = —LEJ?(b2—r2) —LE. (10-7)
Then, po = —EEY?(b*—a?) —LE.
Substituting this value in (10-3), and proceeding as in Case 1, we have
R, = 1By a2—b%), O,=0 and Z, =0, (10-8)

over the surface r = a.

Again, it can readily be seen, as in § 8, that, in Case 2, the surface tractions acting on the
plane ends of the cylindrical tube are given by expressions similar to (8-12) in which a is
replaced by b.

In Case 1 the force system which must be exerted on the inner surface of the tube is a
constant normal force acting outwards and could be produced by creating an appropriate
positive pressure of gas inside the tube as compared with that outside the tube. If the gas
pressures inside and outside the tube are equal, then the tube will tend to collapse under
torsion.

It is of interest to note that if one end of a rubber tube is forced over the end of a glass tube
and the other end of the rubber tube is turned in its own plane, so that the rubber is in torsion,
it will tend to slip further over the glass tube owing to the absence of the normal traction
Z,, given by (8:12), on its end.

In a similar manner, it can be shown that if the tube is subjected to a combined simple
extension and torsion, similar to that of the cylinder in § 9, so that the deformation is described
by (9-3), the forces exerted on the ends of the tube are given by (9-8), or a similar expression
in which a is replaced by &, and normal surface tractions of magnitude §Ey2A¥(a2— b?) per
unit area of surface, measured in the undeformed state, acting along the positive direction
of r, must be exerted on either the inner or outer curved surface of the tube. The area of
either of these curved surfaces changes by the factor A! in the extension and not at all in
the torsion and consequently the normal surface traction which must be exerted has the
magnitude Ey21(a®>—b?) per unit area, measured in the deformed state.

This work forms part of a programme of fundamental research undertaken by the Board

of the British Rubber Producers’ Research Association.
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